avatar

离散数学整理(二)-集合与关系

本文由Hobee原创,并仅在本站发表,仅供各位小伙伴学习交流使用。

为避免不必要的纠纷,本文禁止以任何形式转载,谢谢配合。

如有问题请通过评论区或邮件联系作者。

本文封面源于网络,侵删。

写在前面

众所周之,hobee在数学的学习方面就宛如一只菜鸡,只好通过不断复习和整理的途径来巩固自己辣鸡的数学成绩。主要是我真的什么也不会了啊(哭哭脸…那就从这里开始吧!

因为考核是候题目是英文的,所以我的整理也就用英文来叭(我也不想啊…

中英术语对照表

为了防止之后我自己都看不明白,在梳理知识点之前我先写一份中英术语对照表好了。

English Chinese English Chinese English Chinese
Set 集合 element 元素 member of a set 集合的成员
Roster method 枚举 set builder notation 集合生成公式 empty set 空集
Universal set    |   全集   |     Venn diagram      |  VN图   |      set equality      |  集合等价  
   Subset        |   子集   |     proper subset     | 真子集  |       finite set       |   有限集   
Infinite set     | 无限集 |      cardinality      | 势 |       power set        | 幂集 
    Union        | 并集 |     Intersection      | 交集 |       difference       | 差 
 Complement      | 补集 | Symmetric difference  | 对称差 |    membership table    | 成员表 
  Function       | 函数 |        domain         | 值域 |        codomain        | 陪域 
    Image        | 像 |       preimage        | 原像 |         range          | 值域 
    Onto         | 满射 |      One-to-one       | 单射 |       Surgection       |            
  Injection      | 单射 |       Bijection       | 双射 |        Inverse         | 否 
 Composition     | 复合函数 |         floor         | 下取整 |        ceiling         | 上取整 
  sequence       | 序列 | Geometric progression | 几何级数 | arithmetic progression | 算术级数 

recurrence relation | 递推关系 | Countable set | 可数集 | Uncountable set | 不可数集
alpha null | 阿里夫零 | Binary relation from A to B | 二元关系 | relation on A | 集合A上的关系
Reflexive | 自反性 | symmetric | 对称性 | antisymmetric | 反对称性
transitive | 传递性 | n-ary relation | n元关系 | relational data model | 关系数据模型
primary key | 主键 | composite key | 复合主键 | selection operator | 选择运算符
projection | 投影 | join | 并 | digraph |
loop | 环 | closure of a relation R with respect to property | 关系R的闭包 | connective relation |
Path | 路径 | circuit | 圈 | $R^\star$ |
equivalence relation | 等价关系 | equivalent class | 等价类 | partition | 划分
Partial ordering | 偏序 | poset | 偏序集合 | comparable | 可比
total ordering | 全序 | well-ordered set | 良序集 | hasse diagram | 哈斯图
maximal element | 最大元素 | minimal element | 最小元素 | greatest element | 极大元素
least element | 极小元素 | upper bound | 上界 | lower bound | 下界

Results

Sets and Relations

Sets

A set is an unordered collection of objects.

The objects in a set are called the elements, or members of the set. $a\in A$ and $a\notin A$

A set is said to contain its elements.

Describing Sets

Roster Method

Example: $V = {a,e,i,o,u }$

Set Builder Notation

Example: $O = { x\in Z^+|x \text{ is odd and } x<10 }$

closed interval $[a,b]$

open interval $(a,b)$

Some Important Sets

$N = \text{natural numbers} = {0,1,2,3\dots}$

$Z = \text{integers} = {\dots,-3,-2,-1,0,1,2,3\dots}$

$Z^+ = \text{positive integers} = {1,2,3\dots}$

$R$ = set of real numbers

$R^+$ = set of positive real numbers

$C$ = set of complex numbers

$Q$ = set of rational numbers

Empty Set and Universal Set

Universal Set

The Universal set $U$ is the set containing everything currently under consideration.

Empty Set

The empty set is the set with no elements. Symbolized $\emptyset$ or ${}$

Notice : $\emptyset \neq {\emptyset }$

Russell’s Paradox

not so important

Subsets and Set Equality

Set Equality

Two sets are equal iff they have the same elements.

$A=B$ iff $\forall x(x\in A \leftrightarrow x\in B)$ is true

$A = B$ means $A\subseteq B$ and $B\subseteq A$

Subsets

The set $A$ is a subset of $B$ , iff every element of $A$ is also an element of $B$ .

$A\subseteq B$ iff $\forall x(x\in A \rightarrow x\in B)$ is true

Proper Subsets

If $A\subseteq B$ , but $A\neq B$ , then we say $A$ is a proper subset of $B$ .

$A\subset B$ iff $\forall x(x\in A \rightarrow x\in B) \ \wedge \exist x(x\in B\ \wedge x\notin A)$ is true

Cardinality of Sets

If there are exactly n distinct elements in $S$ where $n$ is a nonnegative integer , We say $S$ is finite, otherwise it is infinite.

The cardinality of a finite set $A$ ,denoted by $|A|$ , is the number of elements of $A$.

Power Sets

The set of all subsets of a set $A$ , denoted $P(A)$ , is called the power set of $A$.

if a set has $n$ elements , then the cardinality of the power set is $2^n$ .

Tuples

Two n-tuples are equal iff their corresponding elements are equal.

2-tuples are called ordered pairs.

Cartesian Product

The Cartesian Product of two sets $A$ and $B$ ,denoted by $A\times B$ is the set of ordered pairs $(a,b)$ where $a\in A$ and $b \in B$.
$$
A\times B = {(a,b)|a\in A\wedge b\in B}
$$
A subset $R$ of the Cartesian product $A\times B$ is called a relation from the set $A$ to the set $B$.

Truth sets of Quantifiers

Predicate $P$ and domain $D$ , the truth set of $P$ to be the set of elements in $D$ for which $P(X)$ is true. ${ x\in D|P(x)}$

Set Operations

Union

$$
A \cup B = {x|x\in A \vee x \in B}
$$

Intersection

$$
A \cap B = {x|x\in A \wedge x \in B}
$$

If the intersection is empty , then $A$ and $B$ are said to be disjoint

Complementation

$$
\overline{A} = { x\in U|x\notin A }
$$

Difference

$$
A-B = {x|x\in A\wedge x\notin B } = A\cap \overline{B}
$$

Symmetric Difference

$$
A \oplus B = (A-B)\cup (B-A)
$$

Generalized unions and intersections

$$
\bigcup^n_{i = 1} A_i = A_1 \cup A_2\cup \dots\cup A_n \
\bigcap^n_{i = 1} A_i = A_1 \cap A_2\cap \dots\cap A_n \
$$

These are well defined , since union and intersection are associative.

Set Identities

Identity laws

$$
A\cup\emptyset = A\
A\cap U = A
$$

Domination laws

$$
A\cap\emptyset = \emptyset\
A\cup U = U
$$

Idempotent laws

$$
A\cup A = A\
A\cap A = A
$$

Complementation law

$$
\overline{(\overline{A})} = A
$$

Commutative laws

$$
A\cap B = B\cap A\
A\cup B = B\cup A
$$

Associative laws

$$
A\cap (B\cap C) = (A\cap B)\cap C\
A\cup (B\cup C) = (A\cup B)\cup C
$$

Distributive laws

$$
A\cap (B\cup C) = (A\cap B)\cup (A\cap C)\
A\cup (B\cap C) = (A\cup B)\cap (A\cup C)
$$

De Morgan’s laws

$$
\overline{A\cup B} = \overline{A} \cap \overline{B}\
\overline{A\cap B} = \overline{A} \cup \overline{B}
$$

Absorption laws

$$
A \cup (A\cap B) = A\
A \cap (A\cup B) = A
$$

Complement laws

$$
A\cup \overline{A} = U\
A\cap \overline{A} = \emptyset
$$

Functions

Definition of a Function

Injection,Surjection and Bijection

Injection

A function is said to be an injection if it is one-to-one or injective.
$$
\forall a,b[f(a) = f(b)\rightarrow a =b]
$$

Surjection

A function is called a surjection if it is onto or surjective.
$$
\forall b \exist a [f(a) = b]
$$

Bijection

A function is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.
$$
\forall a,b[f(a) = f(b)\rightarrow a =b] \wedge \forall b \exist a [f(a) = b]
$$

Inverse Function

Function Composition

Partial Functions

Relations

Relations and Properties

A binary relation R from a set A to a set B is a subset $R\subseteq A\times B$

$a R b$ denotes that $(a,b) \in R$ , $a$ is related to $b$ by $R$.

A binary relation R from a set A is a subset of $A\times A$ .

Properties
Reflexive

$R$ is reflexive iff $(a,a)\in R$ for every element $a\in A$
$$
\forall x[x\in A\rightarrow(x,x)\in R]
$$
The empty relation on an empty set is reflexive vacuously.

Irreflexive

$R$ is irreflexive iff $(a,a)\notin R$ for every element $a\in A$
$$
\forall x[x\in A\rightarrow(x,x)\notin R]
$$

Symmetric
Antisymmetric
Transitive
Combining Relations

We can combine two relations using basic set operations to form new relations.

Composition

Suppose

$R_1$ is a relation from a set $A$ to set $B$ .

$R_2$ is a relation from a set $B$ to set $C$ .

Then the composition of $R_2$ with $R_1$ , is a relation from $A$ to $C$ , denoted by $R_2 \circ R_1$.

Powers of a relation

Let $R$ be a binary relation on $A$ . Then the powers $R^n$ of the relation $R$ can be defined inductively by:

$R^1 = R$ , $R^{n+1} = R^n \circ R$.

n-ary Relations and Applications

Representing Relations

Closures of Relations

Equivalence Relations

Partial Orderings

文章作者: hobee
文章链接: https://hobeedzc.github.io/2020/05/19/%E7%A6%BB%E6%95%A3%E6%95%B0%E5%AD%A6%E6%95%B4%E7%90%86%EF%BC%88%E4%BA%8C%EF%BC%89-%20%E9%9B%86%E5%90%88%E4%B8%8E%E5%85%B3%E7%B3%BB/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Hobee's Blog

评论